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Abstract. All mutually inequivalent toroidal gradings of the Lie algebsa(3, C) are
constructed. Each of them provides several different graded contractions to other eight-
dimensional Lie algebras. These can be either continuous, or discrete. The continuous ones are
related to generalized Wigner—Inonu contractions. The behavioul(&fC) Casimir operators

under the graded contractions is studied and the Casimir and generalized Casimir operators of
the contracted Lie algebras are presented.

1. Introduction

Let us consider a physical problem described by a system of equations, be they algebraic,
differential, finite difference, integral, or some combination of the above. A crucial feature
of the problem is the symmetry group of the system, i.e. the group of transformations
that takes solutions into solutions.

It is always of interest to study relations arising between problems corresponding to
different, but related group§.

One such type of relation between different Lie groups is mutual inclusignc G.
Systems invariant under a grodpare related to those invariant under a subgréypc G
via symmetry breaking.

A different type of relation between Lie algebras (and the corresponding Lie groups) is
provided by Lie algebra contractions and deformations. A given Lie algelmfadimension
n is embedded into a family of Lie algebras depending on parameters. All algebras in the
family have the same dimensian but they can belong to different isomorphy classes.

Lie algebra contractions were introduced in a more specific manner by Inonu and Wigner
[1], further studied e.g. by Saletan [2] and reviewed e.g. by Gilmore [3].

Wigner—Inonu contractions can be viewed as singular changes of bases, starting from
some chosen basis in a given Lie algebra. Indeed, consider a{basis., ¢,} of a Lie
algebraL. Introduce a new basis

ﬁ = Uik(glv DR 8p)ek
Un(L ..., 1) =84

whereU;; is some matrix depending on the parametgrd_et U be nonsingular fog; # 0,
le;| < oo, but singular when one or more of the parameters go to zerog;F610 the new

(1.1)
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basis will satisfy commutation relations with structure constdnts transformed from the
original onesCiy;:

Cit1 = Uia(&) U (€) Capa Uy (). (1.2)

Fore; — 0, formula (1.2) no longer holds and we obtain a new algebra, the contracted one,
in general not isomorphic té.

Typical examples, bringing out the physical meaning of contractions, are contractions
from Poincaé groupsP (n, 1) to Galilei groupsG (n) in the singular limit ¢ — oo, where
¢ is the speed of light. Another example is the contraction of the de Sitter g@@RX),
or 0(4,1) to the Poinca, or Euclidean groups [4, 5] when the ‘radius of the univere’
satisfies 1R — O.

A different approach has been investigated more recently, namely that of ‘graded
contractions of Lie algebras’ [6-10]. A grading by a finite Abelian group (most often
a cyclic group) of automorphisms @ decomposes the Lie algebra into a sum of grading
subspaces

L=Lo+Ly+ -4 Ly, [Li, Lk] € Litkmodan (1.3)

where M is the order of the grading.
Instead of modifying the basis we modify the commutation relations in a manner that
respects the grading

[L:, Li] € €ikLitimodm) (1.4)

[x, y]e = eixlx, y] S Lijxk xeli,yelL.

The parameters;; do not depend on the choice ofandy, only on the grading subspaces
involved (i.e. oni andk).

In order for the new deformed commutation relations to define a Lie algebra, that is to
satisfy the antisymmetry condition and the Jacobi relations, the paramgtensist satisfy

Eik = Eki (1.5)
and
Eij€itjk = Eik€itk,j = EjkEjtk,i- (1.6)

Once a Lie algebra and a grading are given, a systematic study of graded contractions
amounts to solving equations (1.5), (1.6) and then taking all limjts— 0, compatible
with these relations. The system (1.6) has two kinds of solutions. The first are ‘continuous’
ones: the chosen contraction coefficieats can go to zero continuously, without ever
violating the Jacobi relations (1.6). For ‘discrete’ graded contractions the Jacobi relations
hold only after the limit is taken: one algebra changes into another one discontinuously.
The continuous graded contractions are closely related to Wigner—Inonu contractions [11].

A recent article [6] was devoted to graded contractions of the Lie algal§BaC).

One particular grading was introduced, nameliZatoroidal grading, the finest grading

that can be induced by a discrete subgroup of the Cartan subgroup of the corresponding
group (SL(3,C) in the case under consideration). This grading is equivalent to the root
decomposition of the Lie algebia ~ 5i(3, C).

The problem of classifying and obtaining all graded contractions, corresponding to the
finest grading, turned out to be a complex one, even for a relatively low-dimensional simple
Lie algebra, such asi(3,C). Indeed 32 different isomorphy classes of contracted Lie
algebras were obtained [6].
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M=1 I (001) Lo = {ha, ha,e1,€5,03, 5—1,5—2763}}—
M2 | (011) Lg = {hy, hp,e3,e.3}, L;= {e1,e2,e..1,€ 2}|
(012) Lo = {hy, hg,e3,e_3} (111) Lo = {hy, hy}
M=3 — L1 = {e1,e_3} Ly = {e1,ez,e3} ™
Loy ={e_1,e2} L_i1={e_1,e_3,e_3}
(211) (611) x (110)
Mt Lo ={h1,ha}  Li={e1,e2} Loo = {h1,h2} Lo = {es, e-3}
= Ly = {es,e—3} L-1={e-1,e-2}| | Lo ={ez,e—2} Lu ={e,e-1}
Mo (122) Lo = {hy, ho} Ly = {er,ea} Ly={e.3}
Ly={e_1,eca} L_s={es}
M (312) Lo = {h1,ha} Ly = {e1} Ly = {e2}
= e
Lg={es,e—3} L-i={e-1} L-a={e2}
- (124)  Lo={h,ho} Li={er} Lo={e2} Lsz={es}
Loy={es1} Logp={ews} L.z={es}

Figure 1. Hierarchy of toroidal gradings a$L(3, C). The levels are determined by the order
M of the grading group; each grading subspdgeis specified by an explicit choice of its
generators; the conjugacy class of element generating the grading group is also shown.

In this article we first determine the hierarchy of non-equivaldii8, C) gradings
(figure 1) by the elements of a maximal torus of the grap3, C) (toroidal gradings).
Then we consider the contractions preserving individual gradings.

The main idea of our approach is based on the following fact which becomes obvious
from the description of our method below. ConsiffgrandI’,, any pair ofs/(3, C) gradings
on figure 1 linked by an edge of the graph. Supp®sés the coarser of the two. Then the
setsS; and S, of nonisomorphic Lie algebras arising by the contractions preseivijrand
', respectively, are related by C S».

Thus having determined all the Lie algebrasSinrone needs to find only those #\ S,
whenT' is replaced by",. The result is not only a considerable economy of effort because
the same Lie algebra is not found several times, but more importantly we associate with
each contracted Lie algebra the coarsest grading(s}(8f C) which give rise to this Lie
algebra.

In section 2 we introduce the gradingsséf3, C) used in this article. They are generated
by an Abelian grading groufdy, a finite group of ordeM with 2 < M < 7. The actual
contractions are performed in section 3, starting from the two coarsest ones. One of them
is obtained forM = 2, the other for one of the two possible distingdt = 3 gradings.

All other gradings are refinements of these two. Section 4 is devoted to the invariants of
the co-adjoint representation of the considered Lie algebras, or equivalently to the Casimir
and generalized Casimir opertors. More specifically, for continuous contractions we show
how the twosi(3, C) Casimir operators behave under contraction and we calculate all the
corresponding invariants of the contracted Lie algebras.
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2. Hierarchy of toroidal gradings

A toroidal grading [12,13] of a semisimple Lie algebfais a decomposition of. into
the direct sum of linear subspaces, that are eigenspaces of a chosen sulgofupe
maximal torusT of the corresponding Lie grou@. Since all choices of the maximal torus
of a semisimple Lie algebrd over the fieldC of complex numbers are equivalent, we
assume that a torus &spriori chosen and fixed. Two toroidal gradingsilofare considered
equivalent, if they can be transformed into each other by an inner automorphism of

For a given grading of. the choice of the grading subgroup is not unique. A natural
choice is to take this subgroup to be ‘as small as possible’.

For all but one toroidal grading af (3, C) it suffices to choose the grading grotfipas
a cyclic group of rather low ordei < 7. The desired grading decomposition is obtained
as an eigenspace decompositiorLafinder the actiog Lg~* of a single elemeng € T that
generates the cyclic groufy. In the one remaining case,Z x Z, grading, two elements
are needed.

There are practical reasons for considering finite subgroups of the torus as grading
groups, rather than continuous ones. First of all, elements of finite order in the torus are
well known [10]. Secondly, their action on the Lie algebra and on any of its representations
is easily described.

Let us now turn to the task in hand, namely to determine all inequivalent toroidal
gradings of the Lie algebrg/ (3, C). It is convenient to carry out our computations in the
three-dimensional irreducible representation/@8, C), the defining representation. Without
loss of generality we can choose the maximal tdfug be realized by diagonal matrices
g € C33 satistying det = 1. An elementg € T acting onL as an element of orde¥,

i.e. satisfying

gMxg™=x (2.1)
for all X € L, is parametrized by a set of three non-negative mutually prime integers

s = [so, 51, 52] 50, 51, 52 € Z7°, ged{so, 51, 52} = 1 (2.2)
such that

M = 5o+ 51+ 52. (2.3)

Explicitly we have [15]
g = diag{eZJTi(ZS1+s2)/M’ e2n'i(—sl+sz)/M’ e27Ti(—S1—2A'2)/M} (24)

with M as in equation (2.3)

The non-negative integess, s1 ands, can be visualized as being attached to the nodes
of the extended (affine) Dynkin diagram df,. A permutation of the labelsy, s; ands;
only changes the ordering 6f(3, C) roots. Hence, only one ordering need be considered;
permutations will give equivalent gradings.

Different choices ofyg, s1, ands, can give equivalent gradings for another reason. This
is related to the finiteness of the dimensioniaf for a sufficiently high ordem of the
elementg some of the grading subspaces ofwill by necessity be empty. Let us now
obtain all toroidal gradings aofl(3, C). The commutation relations for the Chevalley basis
are given in table 1.

M = 1. This is the trivial grading. The entire algebrfais an eigenspace of the elements
corresponding to [100], [010], or [001]. They all act as the identity/on
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Table 1. Commutation relations aofl(3, C) generators

h1 ho e1 e e3 e_1 e_o e_3
h1 0 0 2eq —e2 —e3 —2¢_1 e e_3
ho 0 0 —e1 2en —e3 e_1 | —2e_2 e_3
e1 —2e1 ey 0 e_3 —e_2 h1 0 0
e e —2en —e_3 0 e 1 0 ho 0
e3 e3 e3 e_o —e_1 O 0 0 —h1—hp
e.1 2e_1q —e_ 1 —h 0 0 0 —e3 e
e_o —e_p 2e_p 0 —ho 0 e3 0 —e1
e.3 —e.3 —e.3 O 0 h1i+hy —ep e1 0

M = 2. The elements [011], [110] and [101] provide three equivalentlecompositions.
We choose the element [011] and obtain

Lo = {hy, h3, e3, e_3} L1 ={e1, e, e_1,e_3}. (2.5)

M = 3. There are two genuinely inequivaleft grading ofsi(3, C). One is given by the
elements [111] and is

Lo = {ha, ho) L1 ={ey, e, €3} L_y={e_1,e_3, e_3}. (2.6)

The gradings [011] and [111] are the only two ‘coarsest’ ones. They are refinements
only of the trivial grading. All other gradings are refinements of (2.5), (2.6), or both of the
above.

The otherZs grading corresponds to the element [012] (or some permutation bf 0
and 2), is given as

Lo = {h1, h2, e3, e_3} Ly ={e1, e_5} L_1={e-1,e2}. (2.7
The levelsL; and L_1 in (2.7) are obtained by splitting, of (2.5) into two.

M = 4. There are two inequivalent gradings of this type.Z4 grading corresponds to
[211] (and permutations) and is a refinement of Me= 2 one:

Lo = {h1, ho) L1 = {e1, 2} Ly = {e3, e_3} L_y={e_1,e_3}. (2.8)

All permutations of [013] give the same grading as [012].
The secondM = 4 grading is the exceptional one, generated by two elements:
[011] x [110]. We have &, x Z, grading, namely

Loo = {hi, h2} Loy = {e3, e_3} Lio = {e2, e 2} L1y = {e1, e 1} (2.9)
and it is a refinement of thg, grading.

M = 5. Two types of elements of order 5 give equival@at grading namely [122] and

[113] (plus permutations). For [122] we have

Lo = {h1, h2)} Ly = {ey, 2} Ly = {e_3} L_1={e1e )} L_5 = {es}
(2.10)

a refinement of the [211] case. The elements [014] and [023] @ive: 3 gradings,
equivalent to [012].
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M = 6. Only oneZe grading of this type exists (up to equivalence). We choose it to be
[312]:

Lo = {hy, ha} L1 = {e1} Ly = {es} L3 = {e3, e_3}

(2.11)
L_1={e1} L_p=/{e_2}.
M = 7. Up to equivalence we have precisely one such finest grading: the root
decomposition of/(3, C). The element [124] yields:
Lo = {hy, h L= L= L3 = fe_
0 = {ha, h2} 1= {e1} 2 = {e2} 3= {e_3} 2.12)

Ly ={e_1} L_>={e_2} L_3 = {es}.

The entire hierarchy of toroidal gradings of(3, C) is presented on figure 1. The
arrows indicate mutual refinements. Our particular choice of the elements of finite order,
amongst equivalent ones, was such as to make the mutual refinements as explicitly visible
as possible. Thus, we choose to kegmnd e_3 together, whenever possible, rather than
choosing e.ge; ande_s.

3. The graded contractions

3.1. General procedure

As outlined in the introduction, we shall introduce a ‘contraction matixt ¢” = {e,,} €
CM>*M 'whereM is the order of the grading. The contraction matrix is symmetric (1.5) and
its matrix elements must satisfy the Jacobi relations (1.6).

There is a certain arbitrariness in the definitioncofwWhenever we havel],, L,] =0
in the grading, thens,, is not defined and can be chosen arbitrarily. Furthermore,
the Demazure—Tits group [14] acts on the Lie algehra It relates different gradings
amongst each other and was already used to eliminate ‘redundant’ gradings corresponding
to permutations ofsy, s1, s2. Within a given grading their group may permute different
grading spaces and thus permute certain rows and columns of the maffirally, once
the Jacobi conditions (1.6) are solved, it is still possible to normalize some matrix elements
in ¢,, by performing a non-singular change of basis, compatible with the grading. This
amounts to the transformation

o,
P vgw (3.1)

obtained by multiplying each element in the spacbox by a non-zero constany, .

The problem of finding all inequivalent contractions for a given grading of a Lie algebra
L thus boils down to several steps:

1. Solve the Jacobi relations (1.6) and obtain all admissible contraction matri¢es
low values ofM, like Z; or Z3 gradings, this is easy to do. F&f > 4 it is preferable to
solve equations (1.6) in a computer-assisted manner. This was done in the present case for
L ~s1(@3,C).

2. Use the Demazure—Tits group to eliminate equivalent mattices

3. Use the change of basis (3.1) to normalize as many non-zero matrix elemeats
possible.

4. Analyse all limitse,,, — O for one or more of the matrix elements of the remaining
contraction matrices, compatible with the Jacobi relations.

The overall procedure can be simplified by starting from the coarsest non-trivial
gradings, theZ = 2 one and one of th& = 3 ones in the present case. All possible

Epp —
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inequivalent graded contractions for the coarsest gradings should be found. Then, the
gradings should be successively refined and only genuinely new, inequivalent, contractions
should be added to those obtained for the coarser grading.

The procedure will now be followed for thg (3, C) algebra.

At the final level, M = 7, the root space grading, we shall recover the results of [6]
(and correct some misprints). The contracted algebras were de@eted., C3, and we
shall use the same notation to relate the present results to the previous ones.

Note that if we putt = 0 in relations (1.6) we obtain

&ij(eoi — €9;) =0 (3.2)

Thus, forey; # go; we must haves;; = 0 identically. This means that all contractions for
g0 # €o; are discrete.

Without repeating it below, we mention that for each grading we obtain the two trivial
contractionsL — L and L — nL, (Abelian) respectively by choosing,, = 1, and
e =0, forall u, v.

3.2. TheM = 2 grading

From figure 1 we see that, up to equivalence, only she- 2 grading exists. The contents
of the grading spaces 0 and 1 are indicated in figure 1.
We have

. (800 801> (3.3)

o1 €11
and the Jacobi identities are
go1(600 — €01) =0 £11(600 — €01) = 0. (3.4)

After normalization (3.1) we find precisely three inequivalent contractions

() ) -

The first leads to the non-decomposable unsolvable algépod [6] and table 2 with Levi
decomposition

C2 ~ Sl(z, (C) > A5,7(1, —1, —l) (36)

(the algebrads 7(a, b, ¢) is defined in appendix 1, as are other algebras used below).
Matrix ¢, leads to the non-decomposable nil-potent Lie algefyaof [6]. Matrix &3
corresponds to a decomposable unsolvable Lie algebra

Ci11~sl(2,C) @ 5A;. (37)
The contractions corresponding 49 and e, are continuougegg = o1, Whereas that of3
is discrete(egg # €01)-
3.3. TheM = 3, (012 grading
We haveLy, L1, L_; as in figure 1. The contraction matrix is
€00 €01 £0-1
&= < €01 * 811) (38)

€0-1 €1-1  *
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satisfying

€01(€00 — €01) = 0 €1-1(g01 — €0-1) = 0

£0-1(00 — €0-1) =0 e1-1(€00 — €01) = 0.
The asterisks in equation (3.8) signify that the elementsi@, C) in the corresponding
positions commute, so the contraction parameters (in thissgas@ds_;_;) are not defined.

From figure 1 we see that th@12 grading is a refinement of thé@d11) grading,

considered above. To obtain new contracted algebras with respect ¥ the? case, we
must impose

€01 7 €0-1. (3.10)

The new contractions will hence all be discrete. From equation (3.8) we fhaye= 0.
This leads to a single new contraction,occurring for

€00 = €01 ;ﬁ 0 Eo—1 = 0 (311)

(or equivalentlyegy = €o-1 # 0, e01 = 0). The contracted algebra is decomposable and
unsolvable, namely

Co ~ aff(2, C) @ 2A;.

(3.9)

3.4. TheM = 3, (111) grading

The secona = 3 grading is not equivalent to the first one. Moreover, it is not a refinement
of the M = 2 grading. The contraction matrix is

* o1 €0-1
&= < €01 €11 €11 ) (3.12)
€0-1 €1-1 €-11
satisfying
£11(g01 — €0-1) =0 £116-1-1 — €0161-1 =0
e_1-1(s01 — €0-1) =0 £116_1-1 — €0-161-1 =0 (3.13)
e1-1(c01 — €0-1) = 0.
Continuous contractions are obtained fgf = go_1 # 0, £116_1-1 = 01€1-1, discrete ones
otherwise. The different possibilities are (see appendix 1 for further explanation):

(1) 01 = €0-1 = 1,611 = 1,611 = &1-1 = 0. We obtain the non-decomposable,
solvable, non-nil-potent Lie algebra; with a six dimensional non-decomposable nil-radical
A673.

(2) e01 = €01 = 1, 611 = 1.1 = €_1.1 = 0. We obtain a special case of
the non-decomposable solvable non-nil-potent algetisa with an Abelian nil-radical
6A;. The algebraC; of [6] depends on five parameters; here they are all set equal to
o =1,i =+1,+£2,+3.

(3) g1 = €01 =0, 611 = €11 = 0, &1 = 1. We obtain the non-decomposable
nil-potent Lie algebraCg with

DS:(8,2,0) CS:(8,2,0) US: (2, 8).

Here and below DS, CS and US stand for derived series, central series, and upper central
series, respectively [14-16].

(4) 01 =60-1=0,611=0,e.1 1 = 1,617 = 1. We obtain the non-decomposable
nil-potent Lie algebraC;o with

DS :(8,5,0) CS:(8,520 US:(2,5,8).
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(5) eo1 = €0.1 = 0, €11 = 0, 1.1 = 0,¢e_17 = 1. The contracted algebra is
decomposable and nil-potent, namely
Cog = Ap3 ® 2A;1.
The discrete contractions obtained in this case are:
(6) eo01 = 1,601 #0, 1,611 = e.1.1 = &1.1 = 0. The contracted algebra is non-

decomposable, solvable, non-nil-potent, hamely a special cagg,aflepending on one
parameter, rather than 5.

(7) eo1=1,60.1 =0, 611 =¢_11 = e1_1 = 0. We obtain a decomposable, solvable,
non-nil-potent algebra, a special case(f (with a = b = 1, see [6]).

3.5. TheM = 4, (211) grading

For the contents of.q, L1, L, and L_; see figure 1. The contraction matrix is

* €01 €02 €0-1
o1 €11 €12 €11

&= (3.14)
€02 €12 €22  €2-1
£0-1 €1-1 €2-1 €—_1-1
and the Jacobi identities imply
£11(601 — €02) =0 g2_1(€01 — €0-1) =0
e_1-1(e02 — €0-1) =0 g2-1(c01 — €02) = 0
e1-1(¢01 — €0-1) =0 e2-1(€02 — €0-1) =0
€11622 — €1261-1 =0 €1160-1 — €1-1802 =0 (3.15)
£208_1-1 — 62-161-1 =0 812821 — €22601 =0
£1162-1 — €1-1601 =0 £106_1-1 — €1-160-1 =0
£_1-1812 — €1-1802 =0 £1282-1 — €2260-1 = 0.

Let us again start from the contractions, satisfying = 92 = €9_1 = A, where we can
normalizer =1,0orA =0

(a) A = 1. Relations (3.14) then reduce to
€11 = £1162-1 = £126_11 €22 = £1262-1. (3.16)
For e1_1 # 0, €22 # 0 no contraction occurs. Faf_; = 0, £, = 1 we re-obtain the non-
decomposable unsolvable algel&ra of table 1 that has occurred already for the = 2
grading. In all other cases we obtain non-decomposable solvable non-nil-potent algebras.
Depending on the values of,, ¢,_1, €11 ande_;_; we obtain special cases 6%, C4, Cs,
Ces and also re-obtaiit’; (see table 2).
(b) » = 0. Relations (3.14) in this case reduce to
11691 = 0, £1269_1 =0 12611 =0
11¢2-1 12¢2-1 12¢-1-1 (3.17)
€11€22 = €1261-1 €226_1-1 = €2-1€1-1.
All contracted algebras are nil-potent and in this way we re-obtain algetya€y, Cio,
and C,g and the new algebras,;, Cog, C3o, and Cs; of table 2.
All other contractions are discrete. The cases that occur are:

(©

(3.18)

S
oo o-=R
coo™
RProOoOT
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The algebras obtained are special case§0&nd C17 and Cas.

(d)
*» 01 0
0 00O
e=11 0 1 0 (3.19)
0 00O
The contracted algebra &4, already obtained foM = 2.
(e)
e = (3.20)

[cNoNay

b
0
0
0

O O O=R.

*
a
b
Cc
For abc # 0 we obtainCs (with two free parameters out of three). Other algebras

obtained areCs6 (a special case) anfzs. We also obtain two algebras overlooked in [6].
Namely, fora = ¢ = 0, b = 1 we obtainCs4 of table 2:

Cas~ Ass(—1) +5A1 ~ {h1+hp, ez, e 3} D {hy —ho} DerDe 1 ®er ®es.
Fora = ¢ = 1, b = 0 we obtainCss of table 1, namely
Caz~ Ass(—1) @ Azs(—1) ® 2A1 ~ {hy + hp, e1, e_1}
@®{h1+ 2ha, ez, e_2} ® {e3} @ {e_3}.
Notice that theM = 2 contractions are recovered by coarsening this grading, i.e. putting

€02 = €22 €11 =6_1-1=¢€1-1 g01=60-1=€12=1¢e2-1.  (3.21)

3.6. TheM = 4,[011] x [110] grading (Z2 x Z, grading)

We have a refinement of th# = 2 contractions. From the Jacobi relations we find that
the contraction matrix must have one of the forms

* 1 0 O a b ¢
oy = 11 00 oy = a 0 0O
0 0 0O b 0 0O
0 0 0 O c 0 0 O
* 1 1 * 0 0 O
oy = 1 vw v w eq = O u v w
1 v vz z 0 v y z
1 W z wz O w z t

with vz = wz = vw = Oyw = uz = vt. The M = 2 contractions correspond to

€00,00 = €00,01 = €01,01 £€00,10 = €00,11 = €01,01 = €01,11 (3.22)
€10,10 = €10,11 = €11,11-

Thus, ¢1 leads toC14, already obtained for théf = 2 grading.

The contraction matrix, leads a special case d@f; for abc # 0 (with two free
parameters, rather than five as the general case)bd=gr0, a = 0 we have a special case
of C16 (with one parameter out of three). For=b = 0, c = 1 we have algebré‘34.

The matrixe; for v = w = 1, z = 0 givesC,, already obtained foM = 2. Forv = 0,

w = 0, z = 1 we obtain a special case 6%.

The matrixe4 provides the following contraction€g(z =w =v=0,u =y =t = 1),
Coz =w=t=0u=v=y=1,Cxz=w=t =u=0 =y =1),
Cyov=w=z=u=0,y=t=1 andCai(v=w=z=u=y=0,r=1)
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3.7. TheM = 5(122) grading

The M = 5 grading is a refinement of thid = 4 one and also oM = 3(111). The spaces
Lo, L11, L., are described in figure 1. The contraction matrix is

* €01 €02 f0-2 €0-1
€01 f11 *  E£12 €11
& = £02 * * E2_2 Eo2_1 (323)
£0-2 €1-2 &2-2 * *
£0-1 €1-1 ¢&2-1 * £-_1-1
and the Jacobi identities imply

£1-2(¢01 — €0-2) =0 e2-1(¢01 — €02) =0
€1-2(¢01 — €0-1) =0 €2-1(¢01 — €0-1) =0
£1-2(¢0-2 —&0-1) =0 e2-1(€02 — €0-1) =0
€1-1(¢01 — €02) = 0 €2-2(€01 — €0-1) = 0
£1-1(¢01 — €0-1) = 0 £2-2(¢02 — €0-2) = 0
€1-1(0-2 —€0-1) =0 e11(c01 — €02) = 0 (3.24)
£1-1(c02 — €0-1) =0 e_1-1(s0-2 —€0-1) =0
€1-1(02 — €0-2) =0
£0161-181162-1 =0 £0182-2 — €1-262-1 =0
£0-261-1— 612611 =0 £0261-1 — €1162-1 =0
80-162-2 — £1-262-1 =0 80-161-1 — 61-26-1-1 =0
£1162 2 — 612611 =10 €-1-162 2 — 21611 = 0.
To avoid algebras already obtained fur = 4, we must put
£02 # €0-2- (3.25)

Continuous contractions are obtained #f = ¢g2 = €02 = g9_1 = A, A = 1, Or
A = 0, hence they were already obtained Mr= 4.

Analysing equation (3.23) and keeping in mind (3.24), we see that only the following
distinct contraction matrices are allowed

b a

* a a * a a b c
a 0 x 0 O a 1l » 0 O
g1=]la » » 0 1 go=|a » » 0 O
b » 0 x x b 0 0 x «
a 01 «x O c 0 0 « O
*x a a b b x a b ¢ d (3.26)
a 1 » 0 O a 0 » 0O
ga3=]la » » 0 O ga=|b » » 0 0
b 0 0 x « c 0 0 » «x
b 0 0 » 1 d 0 0 « O

In g1, e2 andez we havea # b, in ¢4 we haveb # c.

The cases; leads to algebra€’s, C15 and Cy (for a # 0,5 =0;a =1, b = 0; and
a =0, b =1, respectively).

The matrixe, leads to the algebras, (with two out of three parametergbc # 0), C14
(ac # 0, b = 0, one parameter out of twol;;7 (b = 0, ac # 0), C21 (a = 0, be # 0, one
parameter out of two)Ci19(a = 1,b =c=0) andCyy (¢ =c =0, b =1).
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The matrixes leads to the general case of the algetga(one parameteyb # 0). For
a=1,b=0(ora =0,b = 1) we obtain the algebr@,, ~ As33® A3 1 (due to a misprint
in [6], C22 was identified asis 35 @ 3A1).

For ¢4 we obtain special cases @f;, C13, C15, and C1g and also the general case of
Cog and 634

3.8. TheM = 6[312] grading

The M = 6 grading is a refinement of bot = 4 gradings, as well as one of tii¢ = 3
gradings. Seven different contraction matriegs. . ¢7 are allowed by the Jacobi identities.
We shall not spell them out here. The contents of the individual grading levels are shown
in figure 1.

No new classes of contracted algebras are obtained at this level. Clagsnékes
its reappearance, this time with four free parameters out of five possible ones. Similarly,
for C13 we obtain one more parameter (three out of four), @ and C19 we obtain the
general cases with three and two parameters, respectively.

3.9. TheM = 7[124] grading

This grading, the finest toroidal one, was studied in detail earlier [6]. On its own, it yields
all toroidal contractions, corresponding to seven different types of contraction matrices.
However, theM = 7 grading is a refinement of th¥ = 6, andM = 5 ones and as
such, adds very little to the picture we already have.
Indeed, forM = 7 we re-obtain the algebraSs, C4, C13, C14 and Cys, this time with
the complete set of five, three, four, two and two parameters, respectively.

3.10. Summary of results

Table 2 contains a list of all Lie algebras obtained by one of the graded contractions of
s1(3,C). In column 1 we repeat the symbdl,, ..., C3, given to the algebras in [6]
(algebrasCs3 and C34 were omitted). In columns 2 and 3 we characterize the isomorphism
class of the Lie algebra obtained, following principles outlined elsewhere [16]. Algebras of
type A, B andC are non-decomposabl®, E and F are explicitly decomposed into direct
sums. Non-trivial Levi decompositions [16—18] are denafedR, whereS is semisimple
(actually simple and equal td(2, C) in our case) andr is the radical (maximal solvable
ideal). For typeB algebras (non-decomposable, solvable, but not nil-potent), we identify the
nil-radical (maximal nil-potent ideal) in column 3. For tygealgebras (non-decomposable
nil-potent) we give the derived series, lower central series and upper central series [16—18]
in Column 3.

All Lie algebras of dimensiod < 5 have been classified; nil-potent Lie algebras have
been classified up to dimensiah= 6 (see [19] and references therein). The notations
A, 4 (€.0.A31 0Or As7(1, —1, —1)) were introduced earlier [19]. The first label denotes the
dimension of the Lie algebra, the second simply enumerates different isomorphism classes
of Lie algebras of the same dimension. Some of the representative Lie algebras depend on
continuous parameters. These are put in brackets,Ae.g(a, b, ¢). The algebrasA(7),

B(7), C(7), A(6), B(6) and D(6) are defined in appendix 1.

In the last column we specify the lowest grading at which a given Lie algebra first
occurs. The letteC indicates a continuous contractiob, a discrete one.

The Lie algebras obtained by the contractions can depend on continuous parameters, up
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to five of them, as a matter of fact. The parameters are non-zero values of the contraction
coefficientse,,, that figure in a non-removable way in the commutation relations. Thus,
they cannot be annulled, or normalized to some chosen number by a change of basis after
the contraction. It turns out that all parameters have the same origin. They are values of the
contraction coefficientsg, (u = 1, £2, £3), i.e. they are directly related to eigenvalues
of the operators; andh,. For continuous contractions we haag, = A, with A =0, or A
normalizable toh = 1. Hence, continuous parameters occur in discrete contractions only.
From table 2 we see that all continuous contractions correspond to grading¥ vith.
What occurs forM = 5 is that some new discrete contractions occur, always leading
to solvable decomposable Lie algebras. Typically, solvable Lie algebras, depending on
parameters, first occur with an incomplete set of parameters. Further refinements of the
grading then remove constraints on the parameters.
Nilpotent Lie algebras are all obtained by continuous contractions. The reason for this
is that they all correspond tey, = 0 (for all values ofu). All unsolvable Lie algebras in
the list contain an/(2, C) subalgebra and are obtained fr < 3.

4. Casimir operators of the contracted Lie algebras

4.1. General comments

The Lie algebras/(3, C) is of rank 2 and as such has two independent Casimir operators,
i.e. operators in the enveloping algebrasdf3, C), spanning the centre of the enveloping
algebra (and hence commuting with all elements of the Lie algebra).

The following question arises. What happens to these Casimir operators when the
algebrasi(3, C) undergoes a contraction? For continuous contractions we can treat the
graded contraction as a singular change of basis. The contraction parameters will then
figure in the Casimir operators themselves and we can view their limits by inspection. We
must, however, keep in mind that whikd(3, C) has precisely two such operators, the
contracted algebras may have more. Indeed, in the extreme case of an Abelian Lie algebra,
every basis element of the Lie algebra is a Casimir operator.

For discrete contractions the situation is quite different. No continuous limiting
procedure is possible, essentially by definition. Moreover, the concept of a Casimir operator
must be generalized, to go beyond polynomials in the generators.

A fruitful way of doing this is to view the Casimir operators as being associated with
invariants of the co-adjoint representation of the corresponding Lie géo[f®—24]. Such
invariants can be calculated directly as follows. Choose a basis for the corresponding Lie
algebraL in which the commutation relations are

[Xi, Xi] = Cini X, 1<i,k,1 <N. 4.1)
Represent the operatol§ in the co-adjoint representation by the vector fields
A d
X =—Cigxy — (4.2)
8x1
acting on functionsF(x1, ..., xy). The invariants are obtained as a set of functionally

independent solutions of the linear first-order differential equations
X,‘F(Xl,...,)CN):O l:].,,N (43)

If the solutions are polynomials, we obtain the Casimir operators by replacing the variables
x; by the generatorsX; and symmetrizing, whenever necessary. If the solutions are
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rational functions, or more general functions, e.g. transcendental functions, we shall call
the corresponding operators ‘generalized Casimir operators’.

We have calculated the invariants of the co-adjoint representation directly for all Lie
algebras obtained by the contractions. In all cases at least two independent invariants exist.
For continuous contractions the invariants are always polynomials in the generators. For
discrete ones we sometimes obtain expressions involving arbitrary powers of the generators,
not necessarily positive integer ones. Examples will be given below.

Thesi(3, C) invariants are of course well known and in the basis we are using we write
them as

C® = h3 + h3 + hihy + 3(ere_1 + eze_o + eze_3)
C® = 3hiho(hy — hy) + 2(h3 — h3) + 9(ere_1 — 2ese_5 + eze_3)hy (4.4)
+9(2e1e_1 — ese_p — eze_3)ho + 27(e1ere3 + e_1e_pe_3).

Note that these are invariants of the co-adjoint representation soithand e, are
commuting variables. We shall not perform the symmetrization needed to obtain the actual
Casimir operators.

4.2. Casimir operators for continuous contractions

Let us run through all continuous contractions in table 2, following the degree of the grading.

M = 2. We go to a new basis by multiplying all elements of the levgh hy, ez, e_3}
by a constanty, those of level Yes, e_1, €2, e_2} by a constan. The contraction matrix
is then expressed as

€00 €01 a o
& = = 2 . 4.5
<801 m) (a ‘i) @9
The invariants (4.4) in the new basis are

1
@ — ﬁ(h% + h% + hiho + 3eze_3) + (e1e_1 + ese_2)

3

B2

c® = a—13{3h1h2(h1 — h2) 4+ 2(h3 — h3) + eze_3(hy — hs)
1

Tap?

+27(ereze3 + e_1e_ze_3)}.

A direct calculation shows that the algehfa of table 2 has two Casimir invariants,
correctly obtained in the limit as

(4.6)
{9(e1e_1 — 2ee_5)h1 + 9(2e1e_1 — eze_o)h>

/32c(2)
3 ;3:)0 I1 = e1e_1 + ege_»
a=1
. @.7)
9 i I> = ere_1(h1 + 2hp) — eze_2(2hy + hp) 4 3(erezez + e_1e_ze_3).

a=1
The other algebra obtained by a continuous contraction imthe 2 case is the non-

decomposable nil-potent Lie algehlfa. It is obtained by putting$? = « — 0. The algebra
Co has a four-dimensional centre

C(L) = {hy, ho, e3, e_3}. (4.8)
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Thus, all four elements of (L), i.e. of the level O in the grading, are invariants. Taking
the limit g2 = « — 0 in «?C® anda®C® we obtain two invariants that are polynomials

in the generators (4.8). In other words, we obtain only two invariants instead of the four
existing ones.

M = 3. Only one of the twoM = 3 gradings provides continuous graded contractions,
namely the [111] grading. To obtain these contractions as singular changes of basis, we
multiply the elements oflg = {h1, hy}, L1 = {e1, €2, e3} andL_; = {e_1, e_2, e_3}, by the
constantsy, 8, andy, respectively. The contraction matrix is

* €01 €0-1 o /‘;‘2 f?;
(801 £11 811)= LA (4.9)
€0-1 €1-1 €-1-1 o “% ”g
Thesl(3, C) invariants in the new basis are
3
By
c“hzgayumml—hg+2m§—h§}

1
c?® = ?(hi + h% + hiho) + (ere_1 + eze_o + eze_3)

o (4.10)
+m{(€1€—1 — 2eze_p + eze_3)h1 + (2e1e_1 — eze_p — eze_3)ho}

+@€1€263 + Fe—le—ze—&
Let us now consider the algebras of table 2, obtained by continuous contractions for
this grading.

AlgebraCs (with all parametersy = 1, i = £1, £2, £3). We must set
a=1p8=y" %<p<2,y—>0 (4.11)
to obtainsll =g11=¢6_1-1— 0.

A direct calculation shows thaf; has four functionally independent invariants. A
suitable basis is

11 = e1€_1 12 = e2¢_2 13 = e3€6_3 14 = ej1e2¢é3. (4.12)

The limiting procedure for the invarian&®, C® of equation (4.10) provides the invariants
L+ 1L+ 13 I (for 1 < p < 2), andl11513/14 (for % < p < 1), i.e. only 3 out of the 4
invariants.

AlgebraC7. The contraction limits are
a=1 y =pB2—0. (4.13)

The solvable non-decomposable Lie algebrahas two invariants, correctly obtained
in the limit as
ﬂ3
" c@ 11 = e1e_1 + ese_» + e3ze_3
; (4.14)

EC(S) — Ip =e_1e_7e_3.
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AlgebraCg. We must set
o =yPtig=y? % <p<1 y — 0. (4.15)

The non-decomposable nil-potent Lie algebra obtain@g, has two invariantsj
and h,. The 51(3, C) Casimir operators correctly contract to two different homogenous
polynomials inky and h,.

AlgebraCig. We set
a=1y° B =1y y — 0. (4.16)

The situation is the same as fa@l. Two invariants exist for the contracted algebra:
hy and hy; elements of the centre @fg. The s/ (3, C) invariants correctly contract to two
different polynomials inz, and k..

AlgebraCs,g. To obtain this algebra, we set
y =af B =y I<p a — 0. (4.17)
The contracted algebra is nil-potent and decomposable. It has 6 invariants:
hi, ho, eq, ez, €3 I =eje_1+ese_p+ eze_s. (4.18)

From C® we obtain two invariants in the — 0 limit, namely 2% + h3 + h1h, for
% <p< % andeje_1 + ese_p + eze_3, if we choose% < p.
From C® we obtain two more, namely a further polynomial/in, &, for % <p< %

erezes for p > % Thus, 4 out of 6 invariants of .5 can be obtained as limits of the two
s(3, C) invariants.

M = 4. We need only consider one of the twé = 4 gradings, hamely the [211] grading,
since the other one gives equivalent results. The new basis is obtained by multiplying
elements of the zero levéhi, iy} by «, level 1{e1, e2} by B, level 2{es, e_3} by y and

level —1 {e_1, e_»} by §. The contraction matrix is

* €01 €02 €0-1 Z glz g, f%
o1 f11 €12 €11 Yy 5 a
&= = 4.19
€02 €12 €22 €21 o ’35—" ”; %}3 (4.19)
€0-1 €1-1 2.1 €-1-1 s ys &
o B Y
The s1(3, C) Casimir operators in the new basis are
1 3 eze_3
c? — E(hi + h3 + hihy) + 55 (e1e_1+eze_2) +3 2
1
C® = 5 {Bhaha(hy — ha) + 2(h3 = h3))
9 (4.20)
+——{(e1e_1 — 2eze_)h1 + (2e1e_1 — eze_3)h2)
afs
9 27 27
+ry2636’3(h1 — hy) + @616263 + Weflefzefg.

Let us run through the continuous contractions in this case.
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AlgebraC, (with all eg; = 1). In this case we put
a=1 y =8° B =287 l<p<3 § — 0. (4.21)

The algebra has two invariants both correctly obtained fromstf& C) invariants in the
8 — 0 limit, namely

Il = €3€_3 12 = ej1e2€3. (422)

AlgebraCs (with all ¢; = 1). We put
o=1y =6’ g =srtt O<p<2 § — 0. (4.23)

Again, two invariants exist, both of which can be obtained as limit€6f and C®,
namely

I1 = eje_1 + eze_p I3 = ejezes. (4.24)

AlgebraCg (with all Co; = 1). We put

a=1 =25 y =82 § — 0. (4.25)
The algebraCs has two invariants, correctly obtained in the> 0 limit as
11 = eze_3 I, = eze_3(h1 — ho) + 3(ere0e3 + e_1e_se_3). (426)

AlgebraC,7. To obtain this nil-potent decomposable Lie algebra we put

o = 8% g =8P+t y =8° O<p<2 (4.27)
The algebras has four invariants, all corresponding to elements of the centre
{h1, ha, e1, e2}. (4.28)

The limits of thes/(3, C) invariants provide just two of them, namely two polynomials in
hi, andhs.

AlgebraCy9. We put
a =381 g =srtt y =87 O<p<?2 2p—q >0 p—qg+2>0.
(4.29)
The algebraCyg has six invariants, five of them in the centre @fy:
{h1, ho, e1, €2, e3, I = ere_1 + ere_»)}. (4.30)

In the § — O limit C® provides two of these invariant&? + h3 + 2h1h, for p+2 < 2
andeje_1 + eze_, for p +2 > 2q. Thesl(3, C) invariantC® also provides two: another
polynomial ink; andh; for 3p + 2 < 3¢ andejezes for 3p +2 > 3¢g. We do not, however,
obtaine;, e;, andes separately.

AlgebraCszp. We put
o =89+t B =28 y =87 O<p<2 §—>0
2gq—p>0 2p—qg—1>0 p+g—1>0 p—q+1>0.
The algebraCsp has four invariants:
{ha, ha, e3, e_3} (4.32)

all elements of the centre. Three of thetm, 4, andese_3 can be viewed as limits of @
andC® (for different values ofp andgq).

(4.31)
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AlgebraCsz;. We put

o = 8% B =46 y =&° O<p<?2 §—>0

(4.33)
2q—p>0 p+g—1>0 —-2p+q+1>0 p—qg+1>0.
The algebraCs; has a centre of dimension 6 namely
{h1, ha, e1, €2, e_1, e_3}. (4.34)

The invariantC® yields two invariants namely? + h2 + hihy for 4p > g + 1 and
ere_1 +eze_p for 4p < g + 1. The invariantC® yields a complementary expression/in
andh, for 4p > g + 1 and a further invariant forpg < g + 1.

4.3. Casimir operators for discrete contractions

For discrete contractions no continuous limiting procedure for the Casimir operators exists.
The only possibility is to calculate the invariants of the co-adjoint representation directly.
That is easy to do and we shall give several examples.

AlgebraC3;. Let us consider thel = 7 grading. The algebra is solvable with an
Abelian nil-radical of dimension difvR(L) = 6. The caself = 7 corresponds teg, all
different. Solvable Lie algebras of arbitrary dimension with Abelian nil-radicals and their
invariants were studied elsewhere [21]. In the case under consideration the algebra has four
independent invariants. They can be chosen to be:

£0-1 €01 12 €0-2 €02 13 €0-3 €03

— —_ £02€03 ,€01€03 €01€02
I =e" "¢ =e,%e % e (4.35)

=e; "e_3 Iy = e e,
where one of the constants, eqg; can be normalized to be; = 1.

If all &, are equal, we can set, = 1 and we re-obtain the continuous case with
invariants (4.12). Notice that the invariants are rational only if the ratingeo—, and
£01/€02, €01/ €03 are themselves rational.

AlgebraCi1. The algebra, obtained by th# = 2 discrete contraction, decomposes
into s/(2, C) and 5 one-dimensional algebras. The invariants hence are

I = (h1+h2)? +4eze_3,e1,e1, €2, e 2, h1 — ha. (4.36)

AlgebraCig. This Lie algebra occurs at the lev&f = 5. It is the direct sum of a
five-dimensional solvable Lie algebra and 3 one-dimensional ones. The solvable Lie algebra
As 3g has a three- dimensional nil-radical that is a Heisenberg algebra. Such algebras were
classified for all dimensions and their invariants are known [24]. Thus, the alggbtaas
four functionally independent invariants

_ (h1—hg)e_3+ 3ezez
= . .

1]_ =é€_1 ]2 =€ 13 = é€3 14 (437)

Notice that/, is rational, but not polynomial, in keeping with the general results for this
type of Lie algebra [24].

It is quite easy to calculate the invariants for all other Lie algebras in table 2, but we
shall not present the results here.
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5. Conclusions

A detailed study of toroidal graded contractions for the Lie alge(¢a, C) has brought

out some general features, which we intend to pursue further. One is the great richness
of the results, i.e. the diversity of Lie algebras obtained by different contractions, already
for relatively coarse gradings. The finer grading$ & 5 for s/(3, C)) contribute only to
discrete contractions and only ‘refine’ the possible values of parameters that characterize
classes of solvable Lie algebras.

The study of all graded contractions @f(3, C) ordered according to the hierarchy of
gradings makes evident three important advantages of the grading preserving approach to
the study of contractions:

(1) Besides the ‘continuous’ solutions of equation (1.6) corresponding to the generalized
Wigner—Inonu contractions one also obtains all the ‘discrete’ solutions of (1.6), i.e. the
discrete contractions.

(2) Even if one is interested exclusively in the continuous contractions, there is an
important simplification here. Rather than analysing all the singular basis transformations
at once, which evidently is a difficult and unruly problem, the graded approach allows one
to split that problem into well-defined smaller ones corresponding to each non-equivalent
grading. Moreover, a physics problem usually imposes additional restrictions on possible
contractions, namely that certain subalgebras should not be deformed during a contraction.
The latter requirement is in this approach inplemented in an elementary manner, further
restricting the range of gradings one needs to study [9].

(3) Finite gradings of representationssét3, C), or of any semisimple Lie algebra, are
well known and straightforward to describe [13]. Therefore, the study of graded contractions
of representations of a Lie algebra is a well-defined problem [7] similar to the one solved
here for (the adjoint representation 6f)3, C).

Some conclusions can also be drawn from section 4, concerning contractions of Casimir
operators. We have seen that at least for continuous contractions,(#€) invariants
always contract to invariants of the contracted Lie algebras. In some cases all the invariants
of the contracted algebras are obtained, in others only a subset of them. This is related to a
more general and yet unresolved problem, namely the contraction of the universal enveloping
algebra of a Lie algebra and its relation to the enveloping algebra of the contracted Lie
algebra. Many algebras obtained by the contractions, specially the nil-potent Lie algebras
and some of the decomposable ones, acquire centres produced by the contraction. This
is the main source of ‘missing’ invariants. The number of these missing invariants can
serve as a measure of the distortion of the original Lie algebra by the contraction. The
original applications [1-3] of Lie algebra contractions were to relate different physical
theories amongst each other and thus to provide a mathematical tool for the correspondance
principle.

Other applications of contractions arise once we are able to implement them analytically,
i.e. introduce contractions parameters into a realization of the considered algebras. As an
example, consider the problem of separation of variables for a Laplace—Beltrami operator
(or Hamilton—Jacobi operator) on a homogeneous space. For simplicity consider a sphere
S2 ~ 013)/0(2). Two separable coordinate systems exist: spherical and elliptic. In
the limit when the radiusk of the spheres satisfieR — oo we obtain a Euclidean
plane E; ~ E(2)/0(2) where E(2) is the Euclidean group. Four separable coordinate
systems exist orE,: cartesian, polar, parabolic and elliptic. All of them are recovered in
appropriately chosen contraction limits [25]. Indeed, using geodesical coordinates[26],
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andx, we realize thev(3) algebra as

d + 1 0 " 0
m=—4+—= — 4+ Xo—
YT 0 TR \ My, T 20,
d 1 0 d
=— + — — 4 Xxp— 5.1
T2 3X2 szz <X1 8X1 2 3)(2) ( )
L d d
= X1— — Xo———
3 13)C2 23)61
with commutation relations
L
[L3, 1] = m [L3, o] = —m1 [71, m2] = R—i (5.2)

For R < oo we haveo(3), for R — oo we obtaine(2). Pursuing the contraction
analytically, one obtains relations between partial differential equations and the separated
ordinary differential equations. Furthermore, one obtains asymptotic formulas for the special
functions occurring as solutions [25].

A related application is to symmetries of linear, and specially nonlinear, differential
equations [27, 28]. As the simplest example, consider the algé{#aR). Two continuous
graded toroidal contractions exist:

sI2,R) —» p(1, 1) sl(2,R) —> A3 (5.3)

where p(1, 1) is the Lie algebra of the Poin@agroup in 14+ 1 dimensions andis; is the
Heisenberg algebra. The first can be realized by putting

h=x9, — ¥y e = —x0y + 2eud, fo =y, — esudy. (5.4)
The commutation relations are
[h,é,] = és, [h, f.] = —fo [es, f.] = 2¢h (5.5)

i.e. sl(2,R) for ¢ £ 0, p(1,1) for ¢ — 0. This can be used to study relations between
SL(2,R) and P(1,1) invariant partial differential equations, if we considerto be a
dependent variable; and y independent ones.

Choosing

hy = %(ax + 1o, — %ayay eq = (ax +1)d, f =yo, (5.6)

we haves/(2, R) commutation relations faw # 0, A3, ones fore — 0. Again this can
be used to relat§ L (2, R) invariant ordinary differential equations to equations invariant
under the Heisenberg group. In this casés to be considered as a dependent variable,
an independent one.

Finally, let us add a few words on possible applications of the contractions of the Lie
algebrasi (3, C) studied in this article.

The first is somewhat speculative and concerns condensed matter physics. The real form
SL(3,R) of the groupSL (3, C) occurs as the symmetry group of the constitutive functionals
of certain simple materials [29]. If the conditions under which this symmetry pertains are
relaxed, or modified, e.g. by placing the materials in external fields, the symmetry group
will be changed. In particular, it may be reduced to a subgroufiaB, R), as investigated
by Nono [29]. On the other hand, it may be distorted into one of the contracted Lie algebras
obtained in this article.

A second application that we are actively pursuing is in the theory of special functions.
It will be known that multivariable special functions, in particular Appell's generalized
hypergeometric functions, can be associated with representations of Lie groups, or quantum
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groups [30-35]. In most cases the considerations were restricted to polynomials and the
relevant groupG is compact, in particulafU (3) [31, 33]. If more general special functions

are allowed [30], the underlying group will be a non-compact form of the gGu.g.
SU(2,1), SL(3,R), or SL(3,C). Many, possibly all, properties of these special functions
then follow from group theoretical considerations. The contractions studied in this article,
will then provide relations between the special functions, in particular Appell functions,
based onSL(3, C), and those based on the contracted groups.

Realizing the programme of applications outlined above is no mean task. While work
in this direction is in progress, reporting on it is well beyond the scope of the present article.
However, methods developed in a previous article [25], devoted to contractian&Spaind
the corresponding special function theory are directly applicableli3, C) contrations.
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Appendix. Bases for Lie algebras used in the text and in table 2

For all Lie algebras of dimension dim< 5 and for nil-potent Lie algebras of dimension
dimL < 6 we use the notations of [19]. For others we use notations compatible with [6].
Below we give all nonzero commutation relations in a bdsis.. ., x,}:

A1 [x1, x2] = x1

Aza [x2, x3] = x1

Azs(a) [x1, x3] = x1 [x2, x3] = ax;

As [x3, x5] = x1 [xa, x5] = x2

As7(a, b, c) [x1, x5] = x1 [x2, x5] = axz [x3, x5] = bx3 [x4, x5] = cx4
As 33(a, b) [x1, 23] =x1 [x3,x4] =bxs  [x2,x5] = x2 [x3, x5] = ax3
As 38 [x1, x4] = x1 [x2, x5] = x2 [x4, x5] = x3

Ag3 [x1, x2] = x6 [x1, x3] = x4 [x2, x3] = xs.

The algebrasA(6), B(6), A(7), B(7) andC(7) are all solvable. For (6) and A(7) the
nil-radicals are Abelian, foB(6) the nil-radical isAs; @ A4, for B(7) itis As1+2A;. The
nil-radical of C(7) is the non-decomposable nil-potent Lie algebg;. In all cases we
denote elements of the nil-radical The two elements ith./N R(L) will be denoted 1, h,}
and this reflects their origin in the contraction. We shall give the non-zero commutation
relations in the nil-radical and represent the actionkefh, on the nil-radical by two
diagonal matrices:

[h1, xi] = Ajixi, [hox;] = Bijx;

(no summation ovef). We have:

(A.1)

A(6) A = diag(2, —e02, —2€0-1, £0-3)
B = diag(—l, 2202, £0-1, £0-3)
A7) A = diag(2, —e02, —2€0-1, £0-2, £0-3)
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B = diag(—1, 2¢qp, £0_1, —280_2, £0_3)
B(6) A = diag2, -1, —2¢_1, 1)

B =diag(—1, 2, ¢9_1, 1)

[x2, x3] = X1
B(7) A =diag2, —1, —2¢0_1, 02, 1)

B =diag(—1, 2, gg_1, —2¢0_2, 1)

[X2, X3] = X1
c(7) A =diag?2,-1,-1,1,1)

B =diag(—1,2,-1,-2,1)

[x1, x2] = x3, [x1, X4] = —x5

(we havegy; # 0 in all cases).
Finally, the algebraD(7) is nil-potent. Its upper central series, lower central series and
the derived series are:

UsS=@3,7 CS=(7,3,0) DS=(7,3,0
and non-zero commutation relations are

[x1, x2] = x3 [x1, x4] = x5 [x2, x¢] = x7.
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